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The present work aims at the development of a systematic method to optimally choose
the parameters of digitally controlled nonlinear reactor dynamics. In addition to tradi-
tional performance requirements for the controlled reactor dynamics such as stability, fast
and smooth regulation, disturbance rejection, etc., optimality is requested with respect to
a physically meaningful performance. The value of the performance index is analytically
calculated via the solution of a Zubov-like functional equation and becomes explicitly
parameterized by the digital controller parameters. A standard static optimization algo-
rithm yields subsequently the optimal values of the above parameters. Within the proposed
framework, stability region estimates are also provided through the solution of the above
functional equation. Finally, a nonlinear chemical reactor example following Van de Vusse
kinetics is used in order to illustrate the proposed parametric optimization method.
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1. Introduction

In recent years, the development of powerful analytical and computational
tools enabled the analysis of the dynamic behavior of complex nonlinear chem-
ical reaction systems to be performed in a thorough and rigorous manner
[1–4]. As a result, the “inverse problem” of modifying and controlling the above
dynamic behavior has also received considerable attention [5,6]. In particular,
it is widely recognized that quite often the chemical reactor dynamics is often
driven by “input” variables associated with the reactor feeding and reaction initi-
ation policy (feed flow rates, reactant inlet concentration, etc.), and therefore it is
amenable to modification through feedback action and the subsequent enforce-
ment of the desirable dynamic modes and behavior [5,6]. Equivalently stated, one
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may derive a feedback control law that dictates the appropriate input profile,
which in turn, enforces the requisite and desirable dynamic behavior on the
controlled reactor dynamics. In particular, unexpected disturbances may occur
driving the chemical reactor far from the design steady state conditions, and the
primary objective is to derive a control law capable of driving the system back to
the design steady-state in a smooth, fast and reliable manner, thus rejecting the
disturbance effect [5,6]. The above represents a typical scenario of a reactor reg-
ulation problem that can be adequately addressed via the action of a feedback
controller. Please notice, that a feedback regulator enjoys design flexibility by
introducing tunable controller parameters that can be adjusted in order to assign
the desirable dynamic characteristics to the controlled reactor dynamics (speed
and non-oscillatory characteristics of the reactor’s response, tolerable overshoot,
size of the stability region, transient behavior towards the stable manifold, as
well as other asymptotic properties) [5,7]. Over the last two decades significant
research effort has concentrated on the nonlinear feedback controller synthe-
sis problem, in order to overcome performance limitations associated with lin-
ear controller design methods applied to linearized reactor dynamic models [5,7].
Furthermore, the advent of digital technology revolutionized the way advanced
nonlinear feedback control algorithms are implemented in practice with the aid
of a computer. Nowadays, computer-based digital control systems are success-
fully designed and used in a multitude of applications [8,9]. However, the prob-
lem of systematically selecting the digital controller parameters for nonlinear
chemical reactors has not been given proper attention, and has been traditionally
addressed either through heuristics or trial-and-error type of approaches, thus
inevitably resorting to extensive dynamic simulations and/or costly experiments
[9,10]. The proposed approach aims at the development of a systematic and com-
prehensive method to optimally select the parameters of a nonlinear digital reac-
tor control system, when in addition to standard performance requirements of
the controlled reactor dynamics (stability, fast and smooth regulatory response
and disturbance rejection), optimality is also requested with respect to a phys-
ically meaningful performance index. In the present study, the tunable parame-
ters of the feedback controlled reactor dynamics are optimally selected through
the minimization of a performance index, representing the decision variables
of the associated optimization problem. Under this formulation, the problem
under consideration becomes a finite-dimensional static optimization problem, as
opposed to an infinite-dimensional nonlinear optimal control problem that could
exhibit computational challenges in practice [11]. Traditionally, the above optimi-
zation problem is carried out in a “brute force” manner: after an initial guess
for the controller parameters, the dynamic equations of the controlled reactor
dynamics are simulated and the value of the performance functional is calculated
numerically. Then, a gradient-direction method is typically applied to update the
controller parameter values until convergence of the recursive algorithm leads
to an optimal set of controller parameter values [11]. More elaborate methods
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from an algorithmic and computational point of view have also appeared in the
pertinent body of literature. They rely either on numerical techniques for solving
challenging two-point boundary value problems, or large scale nonlinear mathe-
matical programs resulting from time-discretization and parameterization of the
input variables [11,12].

The present research study introduces a systematic and practical method-
ology that addresses the above finite-dimensional static parametric optimization
problem for digitally controlled nonlinear reactor dynamics. In particular, the
proposed approach is based on the explicit calculation of a physically meaning-
ful quadratic performance index by solving a Zubov-like functional equation. It
can be proven that the functional equation admits a unique locally analytic solu-
tion in the vicinity of the reference equilibrium point, which is also endowed
with all the properties of a Lyapunov function for the controlled reactor dynam-
ics. Therefore, a transparent and very useful link between optimality and sta-
bility can be established through the solution of the above functional equation.
Furthermore, the analyticity of the solution enables the development of a series
solution method for the functional equation that can be easily implemented with
the aid of a symbolic software package such as MAPLE. It is also shown that
the evaluation of the above Lyapunov function solution at the initial conditions
leads to an explicit calculation of the value of the performance index. Since
the dynamic equations of the controlled reactor dynamics are parameterized by
the controller parameters, the Lyapunov function and solution to the functional
equation is also parameterized, and therefore, the value of the performance index
depends explicitly on the controller parameters. In light of the above observa-
tion, the employment of static optimization techniques can provide the optimal
values of the finite set of controller parameters. Moreover, it should be pointed
out, that for the optimally calculated controller parameter values, an explicit esti-
mate of the size of the system’s stability region can also be provided by using
results from advanced stability theory for discrete dynamical systems [13,14].

The present paper is organized as follows: In Section 2 a succinct descrip-
tion of the requisite mathematical preliminaries and background is provided.
Section 3 encompasses the main ideas and algorithmic structure of the proposed
approach for parametric optimization of nonlinear digitally controlled reactor
dynamics. In Section 4 simulation studies have been conducted in a represen-
tative chemical reactor example in order to evaluate the proposed method and
illustrate its applicability. Finally, a few concluding remarks are provided in
Section 5.

2. Mathematical preliminaries and motivation

Before we embark on the presentation of the proposed parametric optimi-
zation scheme for nonlinear digitally controlled reactor dynamics, let’s first con-
sider the simpler case of linear reactor dynamics in order to conceptually and
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methodologically motivate the development of its nonlinear analogue. The latter
represents the focus of the present study.

A linear (or linearized) autonomous dynamic system is considered in the
discrete-time domain:

x(k + 1) = Ax(k) (1)

where the non-negative integer k ∈ ℵ = {0, 1, 2, . . . } is the discrete time index,
x(k) ∈ �n is the vector of state variables at the time instant k and A an n×n con-
stant matrix. The above linear dynamic system in the discrete-time domain rep-
resents the linear discrete dynamics of a chemical reactor that is obtained either:

a. through a reliable and accurate discretization method applied to the orig-
inal continuous-time reactor dynamics in order to digitally (numerically)
simulate the dynamic behavior of the reactor of interest [5,9,15]

or:

b. through direct system identification methods and a set of historical
input/output data, in the case where the reactor dynamics and the associ-
ated kinetics are discouragingly complex and not amenable to first-prin-
ciple based modeling [5,9]. In both cases however, it is assumed that (1)
adequately captures the actual linear reactor dynamics.

It is also assumed that the above system’s characteristic matrix A has sta-
ble eigenvalues, which were assigned thanks to a fixed structure linear controller,
designed in accordance to well-known methods [7,9].

The following quadratic performance index associated with system (1) can
be defined:

J =
∞∑

k=0

[x(k)]T Q [x(k)] (2)

where Q is an arbitrarily selected positive-definite symmetric matrix, and the
superscript T denotes the transpose of a vector or a matrix. Notice, that the
aforementioned stability requirement on the reactor dynamics (1) implies that
the infinite series in (2) converges to a fixed value limit J [13,14].

Introducing the following Lyapunov matrix equation:

AT PA − P = −Q (3)

one can easily show that equation (3) admits a unique symmetric and positive-
definite solution P [13]. Furthermore, applying standard Lyapunov stability the-
orems [13], it can be inferred that the quadratic form defined as:

V (x) = xT Px (4)
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has the following properties:

V (x) > 0, V (0) = 0

�V (x (k)) = V (x(k + 1)) − V (x(k)) = −x (k)T Qx (k) < 0 (5)

and therefore, it qualifies as a Lyapunov function [13].
Using equation (5) one obtains:

J =
∞∑

k=0

[x(k)] T Q [x(k)] = −
∞∑

k=0

[V (x(k + 1)) − V (x(k))]

= V (x(0)) − V (x(∞)) = V (x(0)) (6)

sinceV (x (∞)) = V (x (k → ∞)) = V (0) = 0 due to the aforementioned stability
assumption [13,14].

Therefore, the value of the performance index J can be easily calculated
through the formula below:

J = V (x(0)) = [x(0)]T P [x(0)] (7)

where P is the unique solution of the Lyapunov matrix equation (3) and x(0)

the initial value of the state vector.
Please notice, that the interesting feature of this approach is signified by

the underlying connection between optimality (performance index) and stability
(Lyapunov function). This link was first explored and mathematically established
by Bertram and Kalman [10] in the continuous time domain.

Let us now examine how the above ideas and techniques can be generalized
in order to account for nonlinear dynamics.

Nonlinear reactor dynamics in the discrete time domain are considered:

x(k + 1) = ϕ(x(k)) (8)

where x(k) ∈ �n is the vector of state variables at the discrete time instant k and
ϕ(x) a real analytic vector function defined on �n. Let x0 be the reference (fixed)
equilibrium point of interest:

ϕ(x0) = x0. (9)

As it was mentioned in the linear reactor dynamics case, the discrete reac-
tor dynamics and nonlinear difference equations (8) are assumed to have been
obtained either through an accurate and reliable discretization method for the
numerical (digital) simulation of the original continuous-time reactor dynam-
ics, or through standard system identification methods [5,7–9,15]. It should be
emphasized that the state space representation of the reactor dynamics (8) in the
discrete time domain (realized via a nonlinear system of difference equations)
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represents the point of departure of any meaningful study of the digital reactor
monitoring and control system design problem [9].

Furthermore, as in the linear case, let us assume that a fixed structure feed-
back controller has been designed, so that (8) represents the control reactor
dynamics that has been rendered locally asymptotically stable. This is equivalent
to assume that the Jacobian matrix of the linearized system A = ∂ϕ

∂x
(x0) has sta-

ble eigenvalues, i.e. eigenvalues that all lie inside the unit disc on the complex
plane [9].

In this case, a quadratic performance index or cost function can be defined
as follows:

J =
∞∑

k=0

Q(x(k)) (10)

where Q (x) is an arbitrarily selected positive-definite real analytic scalar func-
tion defined on �n with Q (x0) = 0 and ∂Q

∂x
(x0) = 0.

Let us now introduce the following functional equation:

V (ϕ(x)) − V (x) = −Q(x) (11)

accompanied by the boundary condition:

V (x0) = 0

where the unknown solution is a scalar function V (x) with V : �n → �.
One easily observes:

J =
∞∑

k=0

Q (x(k)) = −
∞∑

k=0

[V (x (k + 1)) − V (x (k))] = V (x (0)) − V (x (∞))

(12)

and since V (x (∞)) = V (x (k → ∞)) = V (x0) = 0 due to the stability assump-
tion stated earlier, the following equality can be established:

J = V (x (0)) (13)

Therefore, the above ideas allow a direct and explicit calculation of the
value of the performance index in terms of the solution of the functional equa-
tion (11), assuming it exists and can be computed.

Moreover, we are provided with some interesting properties concerning the
solution V (x) of the functional equation (11). Notice that by construction, the
rate of change �V (x (k)) is negative definite since Q (x)is positive definite:

�V (x (k)) = V (ϕ (x (k))) − V (x (k)) = −Q (x(k)) < 0 (14)
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and therefore, if the solution of the functional equation (11) can be proven to be
positive definite, it also qualifies as a Lyapunov function for the controlled reac-
tor dynamics (8) [13]. In such a case, the stability property of dynamics (8) and
standard converse Lyapunov stability theorems for nonlinear discrete dynami-
cal systems [13] imply the existence of a Lyapunov function that satisfies the
functional equation (11). It should be emphasized, that the above construction
represents exactly the discrete-time analogue of Zubov’s PDE that was devel-
oped for the explicit computation of Lyapunov functions for nonlinear dynami-
cal systems modeled through ODEs in the continuous-time domain [14,16]. With
respect to the above Zubov-like functional equation (11) the following important
issues need to be addressed:

2.1. Existence and uniqueness of solution

Theorems in references [14,17–19] guarantee the existence and uniqueness
of a locally analytic solution V (x) of the functional equation (11) in the vicinity
of the reference equilibrium point x0.

2.2. Solution method

From a practical point of view, one needs to develop a comprehensive
method for solving the functional equation (11). Since ϕ (x), Q (x) and the solu-
tion V (x) are locally analytic, it is possible to calculate the solution V (x) as a
multivariate Taylor series around the equilibrium point of interest x = x0.

The proposed solution method can be realized through the following steps:

a. Expand ϕ (x), Q (x) and the unknown solution V (x) in multivariate Tay-
lor series and insert them into functional equation (11).

b. Equate the Taylor coefficients of the same order of both sides of func-
tional equation (11)

c. Derive a hierarchy of linear recursion formulas through which one can
calculate the Nth order coefficient of V (x) given the Taylor coefficients
up to order N − 1 that have been computed in previous recursive steps.

It is feasible to explicitly derive the aforementioned recursive formulas and
present them in a mathematically compact form if tensorial notation is used [18]:

a. The partial derivatives of the µ − th component fµ (x) of a vector func-
tion f (x) evaluated at x = x0 are denoted as follows:
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f i
µ = ∂fµ

∂xi

(xo)

f ij
µ = ∂2fµ

∂xi∂xj

(xo) (15)

f ijk
µ = ∂3fµ

∂xi∂xj∂xk

(xo) , etc . . .

b. The standard summation convention where repeated upper and lower
tensorial indices are summed up.

Under the above notation, the unknown solution V (x) of the functional
equation (11) represented as a multivariate Taylor series attains the following
form:

V (x) = 1
1!

V i1
(
xi1 − xi1,0

) + 1
2!

V i1i2
(
xi1 − xi1,0

) (
xi2 − xi2,0

) + . . .

+ 1
N !

V i1i2...iN
(
xi1 − xi1,0

)
. . .

(
xiN − xiN,0

) + . . . (16)

As mentioned above, one inserts the Taylor series expansions of ϕ (x), Q(x),
V (x) into functional equation (11) and starts equating coefficients of the same
order.

Since Q(x0) = ∂Q

∂x
(x0) = 0, one can easily show that V (x) does not have

linear terms in x : ∂V
∂x

(x0) = 0, or equivalently V i1 = 0 for i1 = 1, . . . , n.
Furthermore, the following relation for the N -th order coefficients can be

obtained:
N∑

L=1

∑

0�m1�...�mL

m1+m2+...+mL=N

V j1...jLϕ
m1
j1

. . . ϕ
mL

jL
= −Qi1...iN (17)

where i1, . . . , iN = 1, . . . , n and N � 2. Note that the second summation sym-
bol in the above formula indicates summing up the relevant quantities over the

N !
m1!...mL! possible combinations to assign the N indices (i1, . . . , iN) as upper indi-
ces to the L positions ϕj1, . . . , ϕjL

, with m1 of them being put in the first posi-
tion, m2 of them in the second one , etc

(∑L
i=1 mi = N

)
[18].

Please notice that the above expression represents a set of linear algebraic
equations in the unknown coefficients V i1,... ,iN . This is precisely the mathematical
reason that enables the proposed method to be easily implemented using a sym-
bolic software package. Indeed, a simple and comprehensive MAPLE code has
been developed to automatically compute the Taylor coefficients of the unknown
solution V (x) of the Zubov-like functional equation (11) (see Appendix).
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2.3. Local positive definiteness of the solution V(x)

Let

ϕ(x) = x0 + A (x − x0) + ϕ(x) (18)

and

Q(x) = (x − x0)
T Q (x − x0) + Q(x) (19)

with ϕ(x), Q(x) real analytic and

ϕ(x0) = Q(x0) = ∂ϕ

∂x
(x0) = ∂Q

∂x
(x0) = 0 (20)

Furthermore, one may represent the solution V (x) of (11) as follows:

V (x) = (x − x0)
T P (x − x0) + V (x) (21)

where

V (x0) = ∂V

∂x
(x0) = ∂2V

∂x2
(x0) = 0 (22)

It can be easily shown that matrix P satisfies the following Lyapunov
matrix equation:

AT PA − P = −Q (23)

which coincides with the one encountered in the linear case (equation 3). Under
the assumptions stated, the above matrix equation admits a unique, positive-defi-
nite and symmetric solution P , and therefore, V (x) is locally positive definite
and a Lyapunov function for the controlled reactor dynamics (8) [13].

2.4. Stability region estimates

Let N be the truncation order corresponding to an N th order Taylor
polynomial approximation V (N) (x) of the solution of the Zubov-like functional
equation (11).

Let

�(N) = {
x ∈ �n|x �= x0 ∧ �V (x) = 0

}
(24)

and

C(N) = min
x∈�(N)

V (N)(x) (25)
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Then, thanks to standard Lyapunov stability theorems for nonlinear
discrete-time systems, the set S(N)(x) defined below can be proven to be wholly
contained in the stability region of system (8) [13]:

S(N)(x) = {
x ∈ �n|V (N)(x) � C(N)

}
(26)

Therefore, the set S(N)(x) represents an estimate of the system’s stability
region. [13,14].

3. The proposed approach

The link established in the previous section between optimality and reactor
stability through a Lyapunov function satisfying a Zubov-like functional equa-
tion can adequately serve the purposes of optimally choosing the parameters of
a digital control system with respect to a performance index. In particular, the
optimal selection of the digital controller parameters can be attained through the
static optimization of the performance index, whose value is explicitly calculated
through the solution of the functional equation that is now parameterized by the
controller parameters.

Let us consider the following nonlinear discrete-time dynamical system with
a state space representation describing the input-driven reactor dynamics:

x (k + 1) = ϕ (x(k), u(k)) (27)

where

• k = 0, 1, . . . is the discrete time index

• u ∈ � is the input variable (typically being the feed flow rate, or the inlet
reactant concentration, or the temperature of the feed stream, etc.) that
can be manipulated according to a “control law” that modifies the reac-
tor dynamics and enforces the desired dynamic behavior [5,7,8,20]

• x (k) ∈ �n is the vector of state variables

• ϕ (x, u(x)) and h (x) are real analytic functions defined on �n×� and �n

respectively,

Without loss of generality, it is assumed that the origin x0 = 0 is the refer-
ence equilibrium point that corresponds to: u = u0 = 0 : ϕ (0, 0) = 0.

A typical scenario of a reactor regulation problem presupposes that exoge-
neous disturbances unexpectedly occurred driving the system far from the design
steady state conditions. The control objective is to derive a control law that
would dictate the requisite pattern of manipulating the input variable u , modify
the reactor dynamics in a desirable fashion (the reactor dynamics is driven by u)
and bring the system back to the design steady state, thus rejecting the effect of
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the disturbances. There is a variety of well-performing and carefully synthesized
nonlinear reactor regulation laws in the pertinent body of literature [5,7,9], and
the simplest of which exhibits the following structure:

u(k) = κ (x (k) ; p) (28)

where p ∈ P represents the m -dimensional vector of controller parameters and
P the admissible parameter space, which is assumed to be a compact subset
of �m. Furthermore, κ (x; p) is assumed to be a real analytic scalar function,
defined on �n × P , with κ (0; p) = 0.

It should be pointed out, that all system regulation laws introduce a set
of controller parameters p ∈ P [5,7,9]. The latter reflect the controller degrees
of freedom (the controller design flexibility). Indeed, the controller parameters
are selected in such a manner that the desired dynamic behavior is assigned to
the controlled reactor dynamics by the regulator. Desirable characteristics would
be a stable, non-oscillatory and relatively fast response/reversion to the design
steady state in the presence of disturbances, suppressing intolerable overshoots,
or meeting certain optimality criteria [5,7,9]. Traditionally, the selection of the
nonlinear regulator parameters p has been achieved through heuristics or trial-
and-error type of approaches [7,9]. In the context of the present study however,
p would be optimally selected through the optimization of a physically meaning-
ful performance index and the ideas presented in the previous section.

The controlled (regulated) reactor dynamics can be easily obtained by
inserting (28) into the reactor dynamics equation (27):

x (k + 1) = ϕ (x (k) , κ (x (k) ; p)) (29)

Let

J (p) =
∞∑

k=0

{ ‖x(k)‖2 + ρ ‖u(k)‖2}

=
∞∑

k=0

{ ‖x(k)‖2 + ρ ‖κ (x (k) ; p)‖2 }
(30)

The choice of the above quadratic performance index is physically meaning-
ful and can be justified by the fact that it contains a term: ‖x(k)‖2 that captures
the distance of the current dynamic reactor state from the reference equilibrium
point (assumed to be the origin) as the regulator forces the reactor to asymptot-
ically reach it, and a second one: ‖u(k)‖2 that represents a measure of the nec-
essary control effort in order to successfully perform the system’s regulation at
the origin.

Please notice, that since the regulation law introduces the parameters p, the
performance index J will depend on p as well.
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To simplify the notation, let us define the vector function � (x(k); p) =
ϕ (x (k) , κ (x (k) ; p)) and the positive definite scalar function Q (x (k) ; p) =
‖x(k)‖2 + ρ ‖κ (x (k) ; p)‖2.

Under the above notation, the controlled reactor dynamics (29) and the
performance index J (p) can be rewritten as follows:

x (k + 1) = �(x(k); p) (31)

J (p) =
∞∑

k=0

Q(x (k) ; p) (32)

Please notice, that the problem under consideration is now formulated
exactly as the one presented in the previous section. However, the dependence
of both the controlled system dynamics and the performance index on the con-
troller parameter vector p is now explicit.

As intuitively expected, the regulator (28) has rendered the controlled reac-
tor dynamics stable, and therefore, the Zubov-like functional equation:

V (�(x(k)) ; p) − V (x(k)) = −Q(x; p) (33)

admits a unique locally analytic solution V (x; p) ,which is a Lyapunov function
that explicitly depends on the controller parameters p. Moreover, the perfor-
mance index J (p) is exactly the value of V at the initial state:

J (p) = V (x(0); p) (34)

Therefore, given an initial condition x(0) , the optimal values for the control-
ler parameters p∗ can be obtained through the solution of the following finite-
dimensional parametric optimization problem:

p∗ = arg min
p∈P

J (p) = arg min
p∈P

V (x(0); p) (35)

subject to a set of constraints that guarantee that the Jacobian matrix ∂�
∂x

(0; p)

has stable eigenvalues (stability requirement). The above static optimization
problem is a nonlinear mathematical program for which a multitude of numeri-
cally efficient algorithms and techniques exist in the literature [12]. Furthermore,
the set of admissible parameters P and the constraints associated with the reac-
tor stability assumptions render this optimization problem a constrained one.
It should be pointed out, that the proposed approach can be computationally
demanding under certain circumstances for higher-order large-scale systems due
to the formulation of the optimization problem that presupposes the symbolic
calculation of the solution of the functional equation (11). However, the com-
parative advantage of the proposed method is that it allows a more transparent
and insightful analysis of the reactor dynamics to be performed, establishing a
very important system-theoretic link between stability and a physical measure of
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performance such as an optimality criterion [10,14,16]. Furthermore, as it will be
seen in the next section’s illustrative example, the availability of enhanced com-
putational capabilities naturally generates new interest in the practical applica-
tion of the above ideas and the proposed optimization scheme.

4. Illustrative example

To illustrate the main aspects and different steps of the proposed algorith-
mic approach, let us consider the series/parallel Van de Vusse reaction [21] taking
place in a continuous stirred tank chemical reactor in isothermal operation [5,6]:

A → B → C

2A → D
(36)

with the rates of formation of species A and B given by:

rA = −k1CA − k3C
2
A (37)

rB = k1CA − k2CB (38)

Under the assumption that the feed stream consists of pure A, the mass
balance equations for species A and B lead to the following nonlinear dynamic
process model [21]:

dCA

dt
= f1

(
CA, CB,

F

V

)
= F

V

(
CA0 − CA

) − k1CA − k3C
2
A

(39)
dCB

dt
= f2

(
CA, CB,

F

V

)
= −F

V
CB + k1CA − k2CB

where F is the inlet flow rate of A, V is the volume of the reactor that is con-
sidered to be constant during the operation, CA and CB are the concentrations
of species A and B in the reactor respectively, and CA0 is the concentration of A
in the feed stream. The control objective is to regulate the concentration CB at
a constant desired level (set-point) by manipulating the dilution rate

(
F

/
V

)
.

The above reactor-dynamic model is mathematically represented in the con-
tinuous time domain. In order to digitally control and optimize the reactor
dynamic behavior a discretization method is needed [5,6,9].

Any type of time-discretization can be used in principle, but for the sake of
simplicity let us employ a basic Euler’s discretization scheme for the nonlinear
ODEs (39). One obtains:

CA(k + 1) = CA(k) + δf1
(
CA(k), CB(k),

(
F

/
V

)
(k)

)

= ϕ1
(
CA(k), CB(k),

(
F

/
V

)
(k)

)
(40)

CB(k + 1) = CB(k) + δf2
(
CA(k), CB(k),

(
F

/
V

)
(k)

)

= ϕ2
(
CA(k), CB(k),

(
F

/
V

)
(k)

)
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where k is the discrete-time index, and δ is the discretization time-step. Please
notice that the time step δ has been chosen small enough compared to the dom-
inant process time constant in order to avoid a numerical instability. Under the
above assumption, it was numerically verified that the nonlinear difference equa-
tions (40) capture quite adequately the reactor’s actual dynamic behavior.

Let us now consider the problem of optimally calculating the digital con-
troller parameters for a specific step change in the set point. In all ensuing sim-
ulation runs the set-point for CB was chosen to be CB,S = 1.05 gmol/l with the
corresponding reactor equilibrium state being at:

(
F

/
V

)
S = 28.428h−1

CAS
= 2.697gmol/l

CBS
= 1.05gmol/l

In order to conform to the theory presented in previous sections and facilitate
the pertinent calculations, deviation variables with respect to the above reference
steady state are defined as follows:

x1(k) = CA(k) − CAS
, x2 = CB(k) − CBS

, u = (F/V ) (k) − (F/V )S (41)

Notice, that the origin becomes now the reference equilibrium point when
deviation variables are used.

Using the above set of deviation variables the reactor dynamic model can
be put in the following form:

x1(k + 1) = ϕ1 (x1(k), x2(k), u(k))

x2(k + 1) = ϕ2 (x1(k), x2(k), u(k))
(42)

with

ϕ1 (x1(k), x2(k), u(k)) = ϕ1
(
x1(k) + CAS

, x2(k) + CBS
, u(k) + (

F
/
V

)
S

)

ϕ2 (x1(k), x2(k), u(k)) = ϕ2
(
x1(k) + CAS

, x2(k) + CBS
, u(k) + (

F
/
V

)
S

)

The numerical values used for the various process parameters are tabulated
in Table 1.

Table 1
Numerical values of the process parameters.

Parameter Value

k1 10 h−1

k2 100 h−1

k3 10 l/gmol/ h
CA0 10 gmol/l
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A simple digital linear regulation law was applied to the system:

u(k) = −p1x1(k) − p2x2(k) (43)

where {p1, p2} are the regulator parameters to be optimized [9]. According to the
proposed method, their optimal values can be obtained by minimizing the fol-
lowing performance index:

J (p1, p2) =
∞∑

k=0

[x2(k)]2 + ρ [u (k)] 2 =
∞∑

k=0

[x2(k)] 2 + ρ [p1x1(k) + p2x2(k)] 2

(44)

Applying the method described in Sections 2 and 3, the above performance
index can be explicitly calculated as follows:

J (p1, p2) = V (x1 (0) , x2 (0) ; p1, p2) (45)

where V (x1, x2; p1, p2) is the solution of the following Zubov-like functional
equation:

V (ϕ1 (x1, x2, −p1x1 − p2x2) , ϕ2 (x1, x2, −p1x1 − p2x2))) − V (x1, x2)

= −x2
2 − ρ (p1x1 + p2x2)

2 (46)

The above functional equation was solved symbolically using the software
package MAPLE and the series solution method for a finite truncation order
N . The result was evaluated at the chosen initial condition and the func-
tion V (N) (x1 (0) , x2 (0) ; p1, p2) was minimized using the nonlinear programming
library of MAPLE (see Appendix):

p∗ = arg min
p∈P

J (p1, p2) = arg min
p∈P

V (N) (x1 (0) , x2 (0) ; p1, p2) (47)

The optimal values of p1 and p2 for different values of the step size and
different orders of truncation N are presented in figures 1 and 2. These values
were obtained with a weight coefficient ρ = 10−5. Please notice that the step size
is a measure of how drastic the disturbance effect has been, driving the system
far from the desired final equilibrium state.

As suggested by figures 1 and 2, the optimal values of the regulator
parameters p1 and p2 are highly dependent on the step size. This is of course
intuitively expected due to the nonlinear nature of the system under study. An
additional piece of information provided by these figures, is that fast conver-
gence is attained, as the order of series truncation N increases. In this par-
ticular case study, an order of truncation N = 4 is enough for a satisfactory
approximation.

Figures 3 and 4 show the optimal responses obtained with different val-
ues of the weight coefficient ρ. As expected, when the weight coefficient ρ
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Figure 1. Optimal values of p1 as a function of the size of the step change in the set point.

attains small values the system’s response is very fast, but at the expense of
unrealistic values of the dilution rate. Indeed, as we lower the value of ρ ,
we tend not to drastically penalize the control effort needed for reactor reg-
ulation, the regulator becomes more aggressive, the reactor response that it
induces faster, but the values of the input variable u that are generated may
become physically unrealizable. The opposite effect is naturally observed for
larger values of the weight coefficient. In this case, a large control effort u is
severely penalized, the regulator becomes less aggressive enforcing a dynami-
cally more sluggish response and reversion to the desired reference equilibrium
state.

Finally, figures 5 and 6 illustrate how the method described in Sec-
tion 2 is used to obtain stability region estimates. This is a very useful
feature of the proposed method, because it also equips us with the capac-
ity to assess the reactor’s stability characteristics under the optimal regulator
parameters. In particular, stability region estimates were obtained by consid-
ering the largest contour curve of the function V (x) which is tangent to the
�V (N)(x) = 0 curve, and wholly contained in the region where �V (N)(x) < 0
[14,16].
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Figure 2. Optimal values of p2 as a function of the size of the step change in the set point.

Figure 3. Optimal output responses to a step change in the set point from 1.2 to 1.05 gmol/l with
different weight coefficient.
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Figure 4. Optimal input responses to a step change in the set point from 1.2 to 1.05 gmol/l with
different weight coefficient.

Figure 5. Geometric interpretation of the method for estimating the stability region with N = 4,
p1 = 46.4 l/h gmol, p2 = 57.3 l/h gmol.
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Figure 6. Stability region estimates for N=2 and N=4 with p1=46.4 l/h gmol, p2=57.3 l/h gmol.

5. Concluding remarks

A systematic methodology was presented that responds to the need of
optimizing the digitally controlled reactor dynamics. The method is based on the
explicit calculation of the value of a physically meaningful performance index
through the solution of a Zubov-like functional equation. A static optimization
scheme provides the optimal reactor regulator parameters, through the minimi-
zation of the parameterized performance index. The properties of the solution
of the Zubov-like functional equation allow the derivation of stability region
estimates associated with the controlled reactor dynamics. Finally, the proposed
method was illustrated in a nonlinear chemical reactor example and its satisfac-
tory performance demonstrated via simulation studies.

Appendix: MAPLE Code

> restart:
> libname:="D:/archives/maple/nlp", libname:
> readlib(mtaylor):
> readlib(coeftayl):
> with( LinearAlgebra):
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> with( linalg ):
> with ( NonlinearProgramming ):
> T:=0.000001:x10:=0:x20:=0:xa0:=10:xas:=2.697:xbs:=1.05:

fv:=28.423:k1:=50:k2:=100:k3:=10:
> Q:=x22+1E−5∗(−p1∗x1−p2∗x2)2:F1:=x1+((−x1∗p1− x2∗p2)∗

(xa0−xas−x1)−(fv+k1+2∗k3∗xas)∗x1−k3∗x12)∗T:
> F2:=x2+((x1∗p1+x2∗p2)∗(xbs+x2)+k1∗x1−(k2+fv)∗x2)∗T:
> N:=7:
> s:=mtaylor(V(x1,x2)-V(x10,x20)-D[1](V)(x10,x20)∗x1-

D[2](V)(x10,x20)∗x2,[x1=x10,x2=x20],N):
> sp:=subs([x1=F1,x2=F2],s):d:=:q(1):=:
> for j from 2 to N-1 do

for i from 0 to j do
p[i,j−i]:=(i!∗(j−i)!)∗coeftayl(s,[x1,x2]=[x10,x20],[i,j−i]):
q(j):=q(j−1) union p[i,j−i]:
d:=d union q(j):

od:
od:

> pde:=mtaylor(sp−s+Q,[x1=x10,x2=x20],N):c:=: r(1):= :
> for j from 2 to N−1 do

for i from 0 to j do
t[i,j−i]:=coeftayl(pde,[x1,x2]=[x10,x20],[i,j−i]):
r(j):= r(j−1) union t[i,j−i]:
c:=c union r(j):

od:
od:

> fin:=solve(c,d):
> fin:
> sol:=subs(fin,s):
> obj:=subs([x1=−0.877307434,x2=−0.16], sol):
> fun:=algsubs(p2=x[2], algsubs(p1=x[1],obj)):
> infolevel [‘UnconstrainedNewton’] :=2:
> infolevel [‘Optimize’] :=2:
> infolevel [‘PrimalDualLogBarrier’] :=2:
> numDecVars:=2:
> x start:=< 50, 80 >:
> UnconstrainedNewton( fun, numDecVars, x start, ‘convex’, ‘float[8]’;
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